Sunday, 30 October 2011

The World Wide Web and HTML


My blog, Information Overload!, can be accessed at http://kaysafus.blogspot.com/


In this blog I will discuss the World Wide Web (WWW, or Web) and Hypertext Markup Language (HTML) as a technology for the digital representation of information, in relation to Web 1.0. I will examine the technical details with a short background history, before considering the opportunities and limitations of using the Web and HTML.

The Web is not the same thing as the Internet. The Internet is the channel through which the Web can function. Email also uses the Internet as a channel. The Web was designed to link information stored on computers. Tim Berners-Lee, its inventor, worked at CERN and originally designed it to enable him to remember connections between people, computers and projects. His vision was to have a ‘single, global information space’ (Berners-Lee, 1999, p. 5). Specifically, his solution was to use hypertext to allow users to move between documents. In his proposal, Berners-Lee offered the solution of a ‘universal linked information system’ (Berners-Lee, 1990). He developed HTML as the primary language for web documents, allowing users to instruct browsers how to display content on a webpage using tags (Chowdhury, 2008).

HTML works by using tags to inform the Web browser how information is to be portrayed on the page. A tag is enclosed in triangular brackets, for example <HTML> informs the browser that this is where the HTML begins, and </HTML> informs it that the HTML ends. I have created a website which demonstrates some of the different tags available.

The term Web 1.0 describes the Web in its early stages, when it was primarily designed to display and share information, rather than allowing users to add their own content, for example by contributing to wikis. Early webpages tended to be rather plain, and merely displayed information and provided hyperlinks to relevant documents elsewhere on the Web. Over time, presentational tags were developed to improve the appearance of webpages, which I will discuss later.

The Web and HTML provide a number of opportunities for the representation of information. It was designed to end incompatibility between different computers (Berners-Lee, 1999). Webpages can be viewed on different machines, presenting information consistently, and allowing users to view and navigate between information in the same way. This is still important today with a huge range of devices and programs used to access the Web. The Web and HTML have been applied to share information globally effectively in all manner of fields, including Information Science. Most webpages use navigation with hyperlinks to assist users, such as guidance on using the catalogue and on Information Management policies on the National Archives webpages here.

Using HTML is fairly simple; therefore it is popular (Chowdhury, 2008). Unlike other computer languages, HTML is in plain English and does not require users to have an in-depth knowledge of programming. Unlike more complex technologies for representing information, such as using SQL to create databases, HTML offers users an easy method to display and share digital information.

Another reason that HTML can be very useful for information professionals is that it allows metadata tags (or meta tags) to improve the experience for a user without them even being aware of it. For example, adding keywords to a webpage describes the page’s content. Using meta tags effectively can offer powerful navigation and improve information retrieval (Rosenfeld & Morville, 2002).

However, there are also limitations to the Web and HTML. In Web 1.0, HTML was not a multi-lingual language. Many languages use scripts which cannot be represented in standard HTML, because it is ‘based on a very limited coded character set.’ (Yergeau, no date) So for example, the Omniglot webpage uses images to demonstrate Sanskrit writing, which means that users cannot copy and paste characters, or interact with them as easily as with Latin languages.

Additionally, while HTML was originally compiled of elements for describing the structure of information, such as paragraphs, hyperlinks and headings, it evolved to include presentational tags, including fonts, colours and tables. This has been attributed to the introduction of Mosaic (Meyer, 2000). Presentational tags made HTML coding confusing and untidy, and caused interoperability problems (Chowdhury, 2008). This disadvantage of HTML has been recognised, and the World Wide Web Consortium (W3C) introduced a recommendation called CSS. CSS stands for Cascading Style Sheets, and offers rich styling of web documents (Meyer, 2000). This removes the need for tags like <B> (for making text bold). The use of CSS created another opportunity, as HTML can return to its original purpose, which was as a structural language, and the presentational aspect of webpages can be addressed by using CSS. This is useful for information professionals, as it helps to separate out the design aspect. For example, it adds stronger argument that searching is an information specialist area rather than an IT or web design area, as the emphasis is on the structure and content of pages.

I have concluded that HTML and the Web are appropriate technologies for the digital representation of information, in relation to Web 1.0. With my webpage, I demonstrated how HTML tags and hyperlinks can be applied technically for the management of digital information. Today the Information Profession exploits HTML and the Web extensively. In particular, the Web is used for information sharing, for structuring information and for ease of navigation, as demonstrated on The National Archives webpages. Meta tagging is also incredibly useful to information professionals, notably for powerful searching and retrieval functions. HTML is an effective tool to provide access to information because it permits information to be displayed on a range of devices. Furthermore, HTML is relatively easy to learn as it uses plain English and does not require a thorough knowledge of programming, therefore allowing more people to use it.

I investigated the constraints of HTML and the Web as Web 1.0 technologies. I recognised the issue with displaying non-Latin languages as script. This was a problem for basic Web 1.0 webpages; it seems that these could only be represented on a webpage with images, which reduced options for manipulation of information. I highlighted the limitations of tagging, particularly how HTML coding became cluttered with presentational tags. I concluded that this problem became less significant with the introduction of Cascading Styling Sheets, which allowed programmers to separate structural and presentational code.


Berners-Lee, T. (1990) Information Management: A Proposal [online] Available at http://www.w3.org/History/1989/proposal.html [Accessed 22 October 2011]
Berners-Lee, T. (1999) Weaving the Web: the origins and future of the World Wide Web, London: Orion Business
Chowdhury, G. G. and Chowdhury, S. (2008) Organising Information: From the Shelf to the Web, London: Facet Publishing
Meyer, E.A. (2000) Cascading Style Sheets: The Definitive Guide, Sebastopol: O’Reilly Media Inc.
Omniglot (no date) Sanskrit [online] Available at http://www.omniglot.com/writing/sanskrit.htm [Accessed 22 October 2011]
Rosenfeld, L. and Morville, P. (2002) Information Architecture for the World Wide Web, Second Edition. Sebastopol: O’Reilly Media Inc.
The National Archives (no date) Catalogue [online] Available at http://www.nationalarchives.gov.uk/catalogue/default.asp?j=1 [Accessed 22 October 2011]
Yergeau, F. (no date)  A world-wide World Wide Web. [online] Available at http://www.w3.org/International/francois.yergeau.html [Accessed 22 October 2011]

No comments:

Post a Comment